
A Memory Hierarchy-Aware Metadata Management
Technique for Solid State Disks

Kwanhu Bang, Sang-Hoon Park, Minje Jun and Eui-Young Chung
School of Electrical and
Electronic Engineering

Yonsei University
Seoul, Korea 120-749

Email: {khbang, soskhong}@dtl.yonsei.ac.kr, {jjuninho, eychung}@yonsei.ac.kr

Abstract— Solid State Disk (SSD) drives are rapidly replacing
conventional hard disk drives (HDDs) due to their remarkable
performance gains. For emulating HDDs, SSDs require a flash
translation layer (FTL) which hides the out-of-place-update
feature of NAND flash memories. In the latest large-capacity
SSDs, FTLs must manage huge metadata such as a logical-to-
physical address mapping table, a pool of free blocks, or a list
of garbage blocks with their erase counts. The total metadata
cannot reside on a small on-chip SRAM so that it must be
hierarchically distributed in DRAM or NAND flash memories.
This paper presents an efficient metadata management technique
for SSDs which fully exploits memory hierarchy of an SSD. By
the proposed technique, the distributed metadata can be effi-
ciently searched or updated with small overheads. Experimental
results show that overheads of metadata management become
considerably large in the latest SSDs and they are minimized
efficiently by the proposed technique.

I. INTRODUCTION

NAND flash memory is being widely adopted in new
storage devices, replacing conventional magnetic disks. Flash-
based storage devices have many advantages over magnetic
disks, such as small size, lightweight, low power consump-
tion, and shock resistance. Due to these advantages, NAND
flash memory became the most appropriate storage element
for many portable devices such as digital cameras, portable
media players, smart phones, and tablets as well as personal
computers and servers. With explosive growth of consumer
electronics market, demand for NAND flash memory also
continues to grow exponentially even now.

However, NAND flash memory has some weak points, e.g.
asymmetric read / write access speed, much larger erase unit
than read / write unit, etc. The most critical factor that causes
performance degradation of SSDs is that NAND flash memory
does not support in-place update, unlike conventional hard
disk drives (HDDs). This characteristic not only causes per-
formance penalties, but also forces SSDs to require different
access methods from conventional HDDs.

To amortize aforementioned characteristics and to emulate
the same access interface as that of HDDs, most of SSDs
are equipped with an internal software layer called flash
translation layer (FTL). It enables SSDs to simply replace
conventional block devices and minimizes modification in disk
I/O management of the operating systems. Major functions of
FTL are 1) logical-to-physical address translation, 2) garbage

collection which reclaims used blocks, and 3) wear-leveling
to increase lifespan of NAND flash. In order to execute these
functions efficiently, many data structures for FTL, such as
address mapping table, pool of free blocks, and list of garbage
blocks with their erase counts, are needed, and these data are
typically called FTL metadata.

The FTL metadata have two conflicting characteristics
which complicates their proper management. First, they need
to be stored on non-volatile memory, otherwise the user data
will be permanently unaccessible when the system experiences
power-failure. Second, the metadata experience much more
frequent access than user data since all the accesses to the
user data in NAND flash require an access to the metadata
(e.g. reference to the address mapping table), while its size
is much smaller than that of the whole user data. These
two characteristics imply that frequently accessed metadata
should be stored and updated in slow NAND flash memory,
which obviously has adverse effect on SSD’s performance
and lifespan. This problem can be resolved if the whole
metadata can be loaded onto a faster memory such as SRAM
or DRAM during the runtime and stored back into NAND
flash at system shutdown. However, unfortunately, the size of
metadata is proportional to the total capacity of the SSD, and
it is unavoidable to manage the metadata in cooperation with
NAND flash for these days’ large-scale SSDs.

To tackle this problem, this paper introduces an efficient
FTL metadata management technique for large-scale SSDs,
which fully exploits internal memory hierarchy of the SSD.
With the proposed technique, the FTL software can read or
update its metadata quickly and all the overheads caused by
metadata transfers in the memory hierarchy can be minimized.
The rest of the paper consists of the followings. In Section II,
the related works about FTL metadata management are listed.
The proposed metadata management technique is described
in Section III, and experimental results for evaluating the
technique is showed in Section IV. Finally, the conclusion
is given in Section V.

II. RELATED WORKS

As explained before, FTL must have three major functions,
i.e. address translation, garbage collection, and wear-leveling.
Among them, address translation scheme is enthusiastically

researched than the others [1]–[3]. NAND flash is accessed
by the unit of a page or a block, hence, basically, block-
level mapping and page-level mapping are possible. Since a
block consists of many pages, block-level mapping requires
only a small mapping table, but it is very inefficient for
small and frequent random updates due to its coarser mapping
granularity. On the other extreme, page-level mapping can
cope with random updates more efficiently than block-level
mapping, but it requires huge memory space to store the
mapping table. To resolve this problem, many block-page
hybrid address mapping schemes have been proposed which
trade-off between two corners. Block-page hybrid address
mapping schemes have tackled associativity between a data
block which takes block-level mapping and a log block which
has page-level mapping. In [1], a data block is associated with
only one log block, or they are fully associated in [2].

There are some works consider very large FTL metadata
which cannot reside on on-chip SRAM [4]. Under this con-
straint, several FTL metadata management schemes are also
proposed [5], [6]. In [5], the authors firstly proposed on-
demand loading of FTL metadata stored in NAND flash into
a small SRAM, called DFTL. However, they did not fully
consider different characteristics of the on-chip SRAM, the
external DRAM cache buffer, and NAND flash. The authors
of [6] tried to reduce the overhead incurred by DFTL - the
frequent updates of metadata in NAND flash, by reducing the
size of the mapping table using block-level mapping. They
additionally introduced a two-level caching of FTL metadata
in order to overcome weak points of the block-level mapping,
but they did not focus mainly on internal memory hierarchy.

In summary, there have been no works proposing efficient
management algorithm of FTL metadata with consideration
of important hardware constraints such as characteristics of
different types of memories equipped in SSDs. Our technique
pays attention to the proper distribution of FTL metadata to
fully utilize advantages of each memory element’s characteris-
tics. Moreover, our work also considers many newest hardware
schemes such as large-scale battery-backed DRAM and multi-
channel / multi-way composition of NAND flash, which the
previous works did not take into account.

III. A MEMORY HIERARCHY-AWARE METADATA
MANAGEMENT

A. Internal Hardware and Software of an SSD

Fig. 1 shows the internal architecture of an SSD we use. It is
equipped with an on-chip SRAM, which is located nearby the
microprocessor inside the SSD controller, an external DRAM
as cache buffer, and multi-channel/multi-way NAND flash
memory chips. The on-chip SRAM is used as scratchpad for
FTL execution, thus it requires to keep a small portion of
metadata needed for FTL operation. The external DRAM acts
as a read cache as well as a write buffer not only for user data,
but also for FTL metadata. NAND flash, which is the only non-
volatile memory in the SSD, is the main storage medium of
user data and the lowest level memory for FTL metadata. Even
though it is not recommended to update data stored in NAND

Fig. 1. Typical Internal Architecture of an SSD

flash frequently due to slower speed and limited lifetime of
NAND flash, every write request from host incurs updates in
FTL metadata which must be propagated to the lowest level
memory to prevent data loss caused by sudden power cut-offs.

An FTL used by the SSD is mainly implemented as a
software for flexibility and scalability. It manages its own
metadata transparent to the host file system. The most im-
portant part is the mapping table. The mapping table provides
address translation and has larger size than the other elements
of FTL metadata. Like other FTLs, our FTL also utilizes over-
provisioning blocks, which is the additional blocks to mitigate
out-of-place feature of NAND flash. The number of over-
provisioning blocks affects not only performance of SSDs, but
also the size of mapping table of the FTL. In addition, a list
of free blocks and statistics for wear-leveling (e.g. erase count
of each block) must be managed. Any other data structures
can be added for different FTLs.

B. The Proposed FTL Metadata Management Scheme

In this subsection, we describe details of the proposed
scheme in terms of four essential points of it. The main goal of
the design is the minimization of overheads caused by search
or update of FTL metadata. The overall management algorithm
and distributed data structures are shown in Fig. 2.

1) Address Mapping for Multi-channel/Multi-Way Architec-
ture: In the multi-channel/multi-way architecture, selection of
proper channel and way determines the efficient utilization
of NAND flash.To be optimal, the selection needs to trace
and search FTL metadata globally all over the channels and
ways, which results in the inter-channel/way scanning for
every request from the host. In order to accelerate this process,
we allocate channels and way statically to each request based
on its logical addresses. More specifically, by masking lower-
order bits of the logical address, the specific channel and
way are easily determined. As a result, requests with adjacent
addresses are allocated to different channels and ways. In fact,
the efficiency thanks to maximally exploited parallelism for

Fig. 2. The Proposed Memory Hierarchy-Aware Metadata Management
Structure

user data has been already reported in [7]. By the same mech-
anism, with FTL metadata statically distributed to channels
and ways according to their corresponding logical addresses,
the resource conflicts of channels and ways are minimized and
the utilization of multi-channel/multi-way is maximized.

2) Directory Structures in On-chip SRAM: The on-chip
SRAM is the fastest and most frequently accessed memory
for an FTL, therefore, all the top-level directory structures
are stored in this memory. For fast searching, all these data
structures are directly indexed by logical addresses or pointers
derived from logical addresses. Fig. 2 presents the four main
data structures residing in SRAM. The first one is the physical
address directory, whose elements point out the physical
addresses of NAND flash pages storing metadata. When
metadata not loaded on SRAM are requested or propagation of
updates is required, the corresponding physical page is easily
determined by this directory, which is indexed by their logical
addresses. The second and the third tables are the metadata
loading pointer and the metadata location pointer, whose
elements are linked bi-directionally. The metadata loading
pointer shares the indexing rule with the physical address
directory, thus the FTL can be easily informed whether the
requested metadata are loaded on SRAM or not, only using
logical addresses. If they are determined to reside on SRAM,
the metadata location pointer additionally gives the index of
the requested metadata pages using the bi-directional pointer,
which also directs the metadata page table. After SRAM is
fully filled by metadata, eviction of metadata pages should be
occurred. the metadata location pointer and the metadata page
table are managed by the least-recently-used (LRU) policy
since the most important property determining efficiency is
the temporal locality of metadata pages.

3) Cache Buffer Using Large-capacity DRAM: When the
requested metadata are not on SRAM, the FTL requests them
to the cache buffer controller. At that time, the cache buffer

is transparent to the FTL so that metadata to be loaded are
requested using the physical address directory on SRAM. The
cache buffer loads the requested metadata according to the
request from SRAM. Also, the updated metadata on SRAM
must be propagated to the cache buffer and NAND flash for
synchronization with the host system. First, both SRAM and
the cache buffer are byte-accessible memories and support in-
place update, hance, the propagation between them is easily
done. In addition, to reduce the number of write to NAND
flash, write-back cache buffer can be used with the battery-
backed DRAM. Fig. 2 shows the direct-mapped cache buffer
table with write-back policy in DRAM. Each cache line has
flags and tags for write-back cache, followed by FTL metadata
in units of a page. When using the recent giga-scale DRAM, all
the metadata can be loaded on DRAM, which can drastically
reduce NAND flash writes with write-back policy. The cache
buffer can store not only metadata but also user data to reduce
the latency of read request.

4) Metadata Block in NAND Flash: All the metadata must
be saved in NAND flash eventually because of the normal
power shutdown. It is often performed on demand, periodi-
cally, or during idle periods. Therefore, the reserved blocks
for metadata should be offered in NAND flash. As shown in
Fig. 2, metadata pages on SRAM or on the cache buffer are
loaded or saved in the unit of a page to prevent the partial
page programming which may incur performance penalties.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the efficiency of the proposed mem-
ory hierarchy-aware FTL metadata management technique,
we implemented a cycle-accurate level SSD platform using
SystemC language, as shown in Fig. 1. The SSD platform
mainly consists of a ARM 7 microprocessor, a SATA interface,
a bank-interleaved DDR SDRAM controller, and 8-channel 4-
way NAND flash memory chips. The total capacity of the SSD
is configured as 64GB and the additional 8GB NAND flash are
provided for the advantages of the over-provisioning. The size
of the external DRAM is 64MB, and that of on-chip SRAM
is 32KB. We implemented an FTL which employs on-demand
garbage collection by merge operation and wear-leveling using
free-block queue on top of BAST [1]. In the FTL, about
24KB of SRAM are used for top-level directory structures,
and the remaining 8KB are used for the metadata page table.
Also, 8MB in DRAM are reserved for FTL metadata and the

TABLE I
THE TRACES USED IN THE EXPERIMENTS

Name # of Req. Description
Crystal Sequential 1000 Crystal sequential benchmark [8]
Crystal Random 1000 Crystal random benchmark [8]

Photoshop 1000 Edit large-size pictures
FTL Download 1000 Downloading with an FTP client
WinXP General 1000 Web browsing, word processing, etc.

remaining 56MB are used for user data. Finally, the I/O traces
used in the experiments are summarized in Table I.

B. The Performance of FTL Metadata Management

In order to measure the performance of our method, we
explored four memory configurations.

• IDEAL SRAM is a memory configuration with ideally
large SRAM keeping the entire metadata not to incur any
FTL metadata loading overheads.

• NO CACHE is a memory configuration which includes
32KB SRAM and 64GB NAND flash without DRAM
cache buffer.

• CACHE is a memory configuration which adds a 64MB
DRAM cache to the NO CACHE configuration. We as-
sume write-through policy in this configuration.

• CACHE+BATTERY is identical to CACHE except that it
adopts write-back cache buffer applying a battery-backed
DRAM.

Fig. 3 shows the execution cycles of the internal operations
with respect to these memory configurations. To appreciate
the proposed technique, we analyzed the execution cycles of
internal operations of an SSD - SATA transfer, FTL metadata
loading, FTL execution, and internal user data transfer. Note
that user data are also cached with the cache buffer in all the
cases, but there is no interference by user data in measuring
the performance of the proposed method.

IDEAL SRAM and NO CACHE show the oracle case and
the worst case execution times. These inform that overheads
of FTL metadata management are considerably large in the
large-size SSDs, from 5.5% for Photoshop trace to 64.6%
for Crystal Sequential trace. In Crystal Sequential case, large
I/O accesses are efficiently parallelized to each channel / way
so that the execution cycle of internal user data transfer is
rather small. As a result, the portion of FTL metadata loading
becomes quite large. On the contrary, the execution cycle
of FTL metadata loading becomes large in Crystal Random
case because of the randomness, though the portion of that
is decreased compared to Crystal Sequential case because of
non-parallelized small random accesses. By allocating DRAM
cache buffer for FTL metadata, the execution cycle caused
by FTL metadata loading are decreased by more than half in
all cases, except 43.1% down in Photoshop case. Finally, the
remaining execution cycle of FTL metadata loading are almost
removed again by the battery-backed DRAM with write-back
policy. Quantitatively speaking, the portion of FTL metadata
loading in the execution cycle is only from 0.8% to 3.8%
when CACHE+BATTERY configuration is used. Especially,
for traces with random characteristics such as FTP Download,
WinXP General, and Crystal Random, the battery-backed
DRAM is very effective. However, Photoshop trace shows
relatively marginal performance gain due to its high data
reusability.

V. CONCLUSION

This paper presents an efficient FTL metadata management
technique for SSDs by efficiently exploiting their internal

Fig. 3. SSD Internal Execution Cycles Measured from an SSD Platform

memory hierarchy. In this hierarchy, SRAM is mainly used as
a top-level directory for fast address translation and mapping
with the consideration of temporal locality. In addition, the
DRAM cache buffer reduces the execution cycle of FTL
metadata loading by more than half using efficient caching
policy. Finally, write-back cache buffer combined with the
battery-backed DRAM makes the overheads negligible and
reduces NAND flash accesses to further increase performance
and lifetime. In the future, the capacity of SSD will be
increased steadily, and huge metadata can be searched or
updated with small overheads with the proposed technique.

ACKNOWLEDGMENT

This work was supported in part by Basic Science Re-
search Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education, Sci-
ence and Technology(2010-0025423), by Samsung Electronics
Company, and by IDEC (IC Design Education Center).

REFERENCES

[1] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, ”A Space-
efficient Flash Translation Layer for CompactFlash Systems,” Consumer
Electronics, IEEE Transactions on, vol.48, no.2, pp.366-375, May 2002.

[2] S.-W. Lee, W.-K. Choi, and D.-J. Park, ”FAST : An Efficient Flash
Translation Layer for Flash Memory,” EUC Workshops 2006, pp.879-
887, 2006.

[3] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, ”A Superblock-based Flash
Translation Layer for NAND Flash Memory,” EMSOFT06, Oct. 2006.

[4] J.-W. Park, S.-H. Park, G.-H. Park, and S.-D. Kim, ”An Integrated
Mapping Table for Hybrid FTL with Fault-tolerant Address Cache,”
Electronics Express, IEICE Transactions on, vol.6, no.7, pp.368-374, Apr.
2009.

[5] A. Gupta Y. Kim and B. Urgaonkar, ”DFTL: a Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address Map-
pings,” ASPLOS09, Mar. 2009.

[6] Z. Qin, Y. Wang, D. Liu, and Z. Shao, ”Demand-Based Block-
Level Address Mapping in Large-Scale NAND Flash Storage Systems,”
CODES+ISSS10, Oct. 2010.

[7] S.-H. Park, S.-H. Ha, K. Bang, and E.-Y. Chung, ”Design and Analysis of
Flash Translation Layers for Multi-Channel NAND Flash-based Storage
Devices,” Consumer Electronics, IEEE Transactions on, vol.55, no.3,
pp.1392-1400, Aug. 2009.

[8] CrystalDiskMark, http://crystalmark.info/software/CrystalDiskMark/index-
e.html

	978-1-61284-857-0/11/$26:
	00 ⓒ2011 IEEE: 978-1-61284-857-0/11/$26.00 ⓒ2011 IEEE

